Бактериостатическое действие антибиотиков это

Антибиотики бактерицидного действия

1)АБ бактериостатического действия

2)АБ бактерицидного действия

Бактериостатические АБ в концентрациях, которые можно создать в организме, задерживают рост микробов, но не убивают их, тогда как воздействие бактерицидных антибиотиков в аналогичных концентрациях приводит к гибели клетки.

Однако в более высоких концентрациях бактериостатические антибиотики могут оказывать также и бактерицидное действие. К бактериостатическим антибиотикам относятся макролиды, тетрациклины, левомицетин и другие, а к бактерицидным –пенициллины, цефалоспорины, ристоцетин, аминогликозиды и другие.

За последние годы были достигнуты большие успехи в изучении механизма действия антибиотиков на молекулярном уровне. Пенициллин, ристомицин (ристоцетин), ванкомицин, новобиоцин, D-циклосерин нарушают синтез клеточной стенки бактерий, то есть эти антибиотики действуют лишь на развивающиеся бактерии и практически неактивны в отношении покоящихся микробов.

Конечным результатом действия этих антибиотиков является угнетение синтеза муреина, который наряду с тейхоевыми кислотами является одним из основных полимерных компонентов клеточной стенки бактериальной клетки.

Под воздействием этих антибиотиков вновь образующиеся клетки, лишенные клеточной стенки, разрушаются. Если осмотическое давление окружающей жидкости повысить, например внесением в среду сахарозы, то лишенные клеточной стенки бактерии не лизируются, а превращаются в сферопласты или протопласты (см.

Протопласты бактериальные), которые в соответствующих условиях способны размножаться подобно L-формам бактерий. После удаления антибиотика микробная клетка, если она не погибла,  вновь становится способной образовывать клеточную стенку и превращаться в нормальную бактериальную клетку.

Между этими антибиотиками не существует перекрестной устойчивости, потому что точки приложения их в процессе биосинтеза муреина различны. Так как все вышеперечисленные антибиотики поражают лишь делящиеся клетки, то бактериостатические антибиотики (тетрациклины, левомицетин), останавливающие деление клеток, снижают активность бактерицидных антибиотиков, а потому их совместное применение не оправдано.

Механизм действия других антибактериальных антибиотиков – левомицетина, макролидов, тетрациклинов – заключается в нарушении синтеза белка бактериальной клетки на уровне рибосом. Как и антибиотики, подавляющие образование муреина, антибиотики, угнетающие синтез белка, действуют на различных этапах этого процесса и поэтому не имеют перекрестной устойчивости между собой.

Механизм действия антибиотиков аминогликозидов, например стрептомицинов, заключается в первую очередь в подавлении синтеза белка в микробной клетке за счет воздействия на 30 S-рибосомальную субъединицу), а также нарушения считывания генетического кода в процессе трансляции.

Противогрибковые антибиотики полиены нарушают целостность цитоплазматической мембраны у грибковой клетки, в результате чего эта мембрана теряет свойства барьера между содержимым клетки и внешней средой, обеспечивающего избирательную проницаемость.

В отличии от пенициллина, полиены активны и в отношении покоящихся клеток грибков. Противогрибковое действие полиеновых антибиотиков обуславливается связыванием их со стеринами, содержащимися в цитоплазматической мембране клеток грибков.

Противоопухолевые антибиотики, в отличие от антибактериальных, нарушают синтез нуклеиновых кислот в бактериальных и животных клетках. Антибиотики актиномицины и производные ауреоловой кислоты подавляют синтез  ДНК-зависимой РНК, связываясь с ДНК ,служащей матрицей для синтеза РНК.

Антибиотик митамицин С оказывает алкилирующее действие на ДНК, образуя прочные ковалентные поперечные связи между двумя комплементарными спиралями ДНК, нарушая при этом ее репликацию. Антибиотик брунеомицин приводит к резкому угнетению синтеза ДНК и ее разрушению.

Подавляющее действие на синтез ДНК оказывает и рубомицин. Все эти реакции являются, вероятно, первичными и основными в действии антибиотика на клетку, так как они наблюдаются уже при очень слабых концентрациях препаратов.

Антибиотики в больших концентрациях нарушают многие другие биохимические процессы, протекающие в клетке, но, по-видимому, это влияние антибиотиков имеет второстепенное значение в механизме их действия.

studfiles.net

1. Бета-лактамные антибиотики

  • Пенамы (бензилпенициллин, ампициллин, амоксициллин, нафциллин, тикарциллин, пиперациллин)
  • Пенемы (пока не выпускаются)
  • Карбапенемы (имипенем, меропенем)
  • Цефемы (цефалоспорины, цефамицины)
  • Карбапенемы (лоракарбеф)
  • Монобактамы (азтреонам)

2. Аминогликозиды: гентамицин, тобрамицин, амикацин, нетилмицин, стрептомицин

3. Фторхинолоны: ципрофлоксацин, офлоксацин, норфлоксацин, эноксацин, ломефлоксацин, левофлоксацин, спарфлоксацин, гатифлоксацин, моксифлоксацин

4. Гликопептиды: ванкомицин, тейкопланин

5. Другие: триметоприм/сульфаметоксазол, метронидазол, рифампицин

1. Макролиды: эритромицин, кларитромицин, азитромицин, диритромицин

2. Клиндамицин

Бактериостатическое действие антибиотиков это

3. Стрептограмины (хинупристин/дальфопристин)

4. Хлорамфеникол

5. Тетрациклины: тетрациклин, миноциклин, доксициклин

Для лечения большинства инфекций достаточно бактериостатического действия, однако при нарушениях иммунитета (например, нейтропении) или слабых защитных механизмах в очаге инфекции (менингит, эндокардит) нужны бактерицидные препараты.

Бактерицидное и бактериостатическое действие может быть избирательным. Так, макролиды, клиндамицин, стрептограмины, хлорамфеникол и тетрациклины оказывают бактериостатическое действие, но в некоторых условиях или в отношении определенных микроорганизмов они бактерицидны.

Кроме того, активность антибактериальных препаратов может зависеть от концентрации: в низкой концентрации в очаге инфекции препарат оказывает бактериостатический эффект, в высокой – бактерицидный. Так, быстрота и выраженность бактерицидного действия аминогликозидов, фторхинолонов и метронидазола находятся в прямой зависимости от концентрации препарата.

Высокую концентрацию в очаге поражения позволяет получить эндолимфатическое (лимфотропное) введение препаратов.

С другой стороны, бактерицидное действие β-лактамных антибиотиков и ванкомицина проявляется медленно и при увеличении концентрации антибиотика почти не усиливается. Бета-лактамные антибиотики бактерицидны только в отношении быстро делящихся бактерий, а фторхинолоны – и в отношении покоящихся.

Бактериостатическое действие антибиотиков это

Проф. Д. Нобель

“Бактериостатические и бактерицидные лекарственные средства” – статья из раздела Терапия

Это свойство препаратов применяется для уничтожения различных микроорганизмов. Обладают таким качеством различные физические и химические агенты. Бактерицидное действие – это способность их разрушать клеточную стенку бактерий и этим вызывать их гибель.

Скорость этого процесса зависит от концентрации действующего вещества и численности микроорганизмов. Только при применении антибиотиков группы пенициллинов бактерицидное действие не усиливается при увеличении количества препарата. Бактерицидным действием обладают:

  • ультрафиолетовые лучи, радиоактивные излучения;
  • антисептические и дезинфицирующие химические вещества, например, хлор, йод, кислоты, спирты, фенолы и другие;
  • химиотерапевтические препараты антибактериального действия для приема внутрь.

Такие препараты для борьбы с инфекцией используются чаще всего. Антибиотики делятся на две группы: бактерицидные и бактериостатические, то есть те, которые не убивают бактерии, а просто не дают им размножаться.

Первая группа используется чаще, так как действие таких препаратов наступает быстрее. Их применяют при острых инфекционных процессах, когда происходит интенсивное деление клеток бактерий. У таких антибиотиков бактерицидное действие выражается в нарушении синтеза белка и предотвращении построения клеточной стенки. В результате этого бактерии гибнут. К таким антибиотикам относятся:

  • пенициллины – “Амоксициллин”, “Ампициллин”, “Бензилпенициллин”;
  • цефалоспорины, например, “Цефиксим”, “Цефтриаксон”;
  • аминогликозиды – “Гентамицин”, “Амикацин”, “Стрептомицин”;
  • фторхинолоны – “Норфлоксацин”, “Левофлоксацин”;
  • “Рифампицин”, “Грамицидин”, “Сульфаметоксазол”, “Метронидазол”.

Способностью уничтожать бактерии обладают и некоторые растения. Они менее эффективны, чем антибиотики, действуют намного медленнее, но в качестве вспомогательного лечения применяются часто. Бактерицидное действие оказывают такие растения:

  • алоэ;
  • бузина черная;
  • кровохлебка лекарственная;
  • чистотел;
  • подорожник;
  • морская капуста.

Бактериостатические вещества (от Бактерии и греч. stasis — cтояние на месте)

антибиотики, ионы металлов (Ag . Au 3 .

Бактериостатическое действие антибиотиков это

при их удалении, добавлении инактиваторов Б. в. рост бактерий возобновляется. Например, действие ионов металлов прекращается в присутствии сероводорода, освобождающего от них поверхность бактериальных клеток. Действие Б. в.

прекращают также вещества, обладающие большой адсорбционной способностью (например, белки). Этим объясняется снижение активности Б. в. кровью, гноем и т. п. В малых концентрациях бактериостатическим действием обладают также Бактерицидные вещества.

Угнетая размножение болезнетворных микробов в организме человека или животных, Б. в. действуют как лечебные препараты. С помощью безвредных для человека Б. в. предохраняют от порчи микробами различные пищевые продукты, виноградное сусло, молоко и т. п.

Растения с бактерицидным действием

11. Какими методами определяют чувствительность микроорганизмов к антибиотикам?

1. Диффузионные методы

— с использованием дисков с антибиотиками

— с помощью Е-тестов

2. Методы разведения

— разведение в жидкой питательной среде (бульоне)

— разведение в агаре

12. Назовите диаметр зоны задержки роста микроорганизма, чувствительно­

Зоны, диаметр которых не превышает 15 мм, свидетельствуют о слабой чувствительности к антибиотику. Зоны от 15 до 25 мм встречаются у чувствительных микробов. Высокочувствительные микробы характеризуются зонами с диаметром более 25 мм.

13. Какой диаметр зоны задержки роста свидетельствует об отсутствии чувствительности к нему микроорганизма?

Отсутствие задержки роста микробов указывает на резистентность исследуемого микроба к данному антибиотику.

14. Дайте классификацию антибиотиков по химическому составу.

• β-лактамы (пенициллины, цефалоспорины, карбапенемы, монобактамы);

Бактериостатическое действие антибиотиков это

• тетрациклины (и глицилциклины);

• макролиды (и азалиды);

• разные антибиотики (фузидиевая кислота, фузафунжин, стрептограмины и др.).

15. Как различаются антибиотики по спектру действия?

Антибиотики широкого спектра – действуют на множество патогенов (к примеру, антибиотики тетрациклинового ряда, ряд препаратов группы макролидов, аминогликозиды).

Антибиотики узкого спектра действия – влияют на ограниченное число патогенных видов (например, пенициллины действуют преимущественно на Грамм микроорганизмы).

16. Перечислите несколько антибиотиков широкого спектра действия.

Антибиотики группы пенициллина: Амоксициллин, Ампициллин, Тикарциклин;

Антибиотики группы тетрациклина: Тетрациклин;

Фторхинолоны: Левофлоксацин, Гатифлоксацин, Моксифлоксацин, Ципрофлоксацин;

Амфениколы: Хлорамфеникол (Левомицетин); Карбапенемы: Имипенем, Меропенем, Эртапенем.

17. Охарактеризуйте способы получения антибиотиков.

·полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).

18. Каким способом получают антибиотики 1-го, 2-го, 3-го и последующих

Бактериостатическое действие антибиотиков это

• Биологический синтез (используют для получения природных антибиотиков). В условиях специализированных производств культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности;

• Биосинтез с последующими химическими модификациями (применяют для создания полусинтетических антибиотиков). Сначала путем биосинтеза получают природный антибиотик, а затем его молекулу изменяют путем химических модификаций, например присоединяют определенные радикалы, в результате чего улучшаются антимикробные и фармакологические свойства препарата;

• Химический синтез (применяют для получения синтетических аналогов природных антибиотиков). Это вещества, которые имеют такую же структуру, как и природный антибиотик, но их молекулы синтезированы химически.

19. Назовите несколько противогрибковых антибиотиков.

Нистатин, леворин, натамицин, амфотерицин В, микогептин, миконазол, кетоконазол, изоконазол, клотримазол, эконазол, бифоназол, оксиконазол, бутоконазол

20. Действие каких антибиотиков приводит к образованию L-форм бактерий?

L-формы — бактерии, частично или полностью лишённые клеточной стенки, но сохранившие способность к развитию. L-формы возникают спонтанно или индуцировано — под воздействием агентов, блокирующих синтез клеточной стенки: антибиотиков (пенициллины, циклосерин, цефалоспорины, ванкомицин, стрептомицин).

21.Укажите последовательность основных этапов получения антибиотиков

из природных продуцентов.

· выбор высокопроизводительных штаммов продуцента (до 45 тыс. ЕД/мл)

· выбор питательной среды;

· выделение антибиотика из культуральной жидкости;

22.Назовите осложнения, наиболее часто возникающие в макроорганизме при лечении антибиотиками.

Токсическое действие препаратов.

Отрицательное воздействие на иммунную систему.

Эндотоксический шок (терапевтический).

23.Какие изменения возникают у микроорганизма при воздействии на него

— антибиотики, нарушающие функцию стенки микробной клетки;

— антибиотики, влияющие на синтез РНК и ДНК или белков в микробной клетке.

Антибиотики первой группы в основном воздействуют на биохимические реакции стенки микробной клетки. Антибиотики второй группы влияют на обменные процессы в самой микробной клетке.

24.С какими формами изменчивости связано появление резистентных форм

Под резистентностью (устойчивостью) понимают способность микроорганизма переносить значительно большие концентрации препарата, чем остальные микроорганизмы данного штамма (вида).

Резистентные штаммы микроорганизмов возникают при изменении генома бактериальной клетки в результате спонтанных мутаций.

В процессе селекции в результате воздействия химиотерапевтических соединений чувствительные микроорганизмы погибают, а резистентные сохраняются, размножаются и распространяются в окружающей среде. Приобретенная резистентность закрепляется и передается по наследству последующим генерациям бактерий.

25.Какими способами микроорганизм защищается от воздействия антибиотиков?

Часто бактериальные клетки выживают после применения антибиотиков. Объясняется это тем, что клетки бактерий могут переходить в дремлющее состояние или состояние покоя, тем самым избегая действия медикаментов.

Состояние покоя возникает в результате действия бактериального токсина, который выделяется бактериальными клетками и дезактивирует такие клеточные процессы, как синтез белка и производство энергии самой клетки.

26. Какую роль играет пенициллиназа?

Пенициллиназа— фермент, обладающий способностью расщеплять (инактивировать) β-лактамные антибиотики (пенициллины и цефалоспорины).

Пенициллиназа образуется некоторыми видами бактерий, которые в процессе эволюции выработали свойство подавлять пенициллин и другие антибиотики. В связи с этим отмечается резистентность таких бактерий к антибиотикам.

Эффлюкс – это механизм антимикробной резистентности, заключающийся в активном выведении антибиотиков из микробной клетки вследствие включения стрессорных механизмов защиты.

28.Назовите плазмиды, участвующие в формировании антибиотикорези-

Плазмиды выполняют регуляторные или кодирующие функции.

Регуляторные плазмиды участвуют в компенсировании тех или иных дефектов метаболизма бактериальной клетки посредством встраивания в повреждённый геном и восстановления его функций.

Кодирующие плазмиды привносят в бактериальную клетку новую генетическую информацию, кодирующую новые, необычные свойства, например, устойчивость к.

Бактериостатическое действие антибиотиков это

29. Перечислите пути преодоления антибиотикоустойчивости микроорганизмов.

— изыскание и внедрение в практику новых антибиотиков, а также получение производных известных антибиотиков;

— применение для лечения не одного, а одновременно нескольких антибиотиков с различным механизмом действия;

— применение комбинации антибиотиков с другими химиотерапевтическими препаратами ;

— подавление действия ферментов, разрушающих антибиотики (например, действие пенициллиназы можно подавить кристаллвиолетом);

— освобождение устойчивых бактерий от факторов множественной лекарственной устойчивости (R-факторов), для чего можно использовать некоторые красители.

30. Каким образом предупреждают развитие кандидомикоза у больных при

лечении их антибактериальными препаратами широкого спектра действия.

Одновременно с антибиотиками назначают противогрибковые препараты, такие как нистатин, миконазол, клотримазол, полижинакс и др.

ОСНОВНЫЕ АНТИБИОТИКИ Править

Бактериальные инфекции очень широко распространены и все еще остаются существенной причиной заболеваемости и смертности

Бактериальная диарея является основной причиной детской смертности во всем мире, а туберкулез часто служит причиной летального исхода инфекционных заболеваний. Применение антибактериальных лекарственных препаратов представляет собой одно из важнейших терапевтических достижений XX в.

, позволившее существенно изменить характер многих бактериальных заболеваний благодаря снижению смертности (например, от бактериального менингита и бактериального эндокардита) и заболеваемости. С другой стороны, в настоящее время антибиотики принадлежат к числу средств, очень часто назначаемых без достаточных оснований.

Отчасти это происходит потому, что многие из них обладают высокой степенью безопасности. Это приводит к их неправильному использованию, например при вирусных инфекциях. Кроме того, некоторые из старых, давно открытых антибиотиков используют в качестве стимуляторов роста животных, мясо которых употребляют в пищу, вследствие чего антибиотик включается в пищевую цепочку у человека в субтерапевтических дозах.

В результате чрезмерного использования антибиотиков все более актуальной становится глобальная проблема возникновения резистентности к антибиотикам. Особую тревогу вызывает распространение резистентных к метициллину стафилококковых инфекций как в больницах, так и среди населения.

Антибактериальные препараты в зависимости от их происхождения (способа получения) классифицируют на антибиотики, химиотерапевтические или синтетические лекарства и полусинтетические лекарства

  • Продукты жизнедеятельности микроорганизмов (антибиотики).
  • Лекарства, получаемые исключительно в лабораторных условиях (химиотерапевтические или синтетические).
  • Лекарства, которые готовят, используя комбинацию двух указанных способов (полусинтетические).

На практике термин «антибиотик» стал синонимом антибактериального препарата, и сейчас такое вольное определение антибиотиков получило всеобщее распространение.

В идеальном случае антибактериальные лекарства блокируют жизненно важные функции бактерий, не влияя на подобные функции клеток организма-хозяина

Когда говорят, что антибиотики обладают избирательной токсичностью, имеют в виду, что они нарушают жизненно важные функции бактерий, не оказывая влияния (или оказывая минимальное влияние) на клетки инфицированного организма.

Причина такой избирательности заключается в том, что бактерии обладают специализированной и особым образом построенной клеточной стенкой, тогда как клетки млекопитающих — обычной клеточной мембраной. В связи с этим вещества, нарушающие синтез или целостность стенки бактериальной клетки, являются токсичными для бактерий, но безвредными для клеток организма-хозяина.

Подобным же образом прокариотическая бактериальная рибосома (70S) настолько сильно отличается от рибосомы эукариот (80S), что служит хорошей мишенью для антибактериальных препаратов. На рис. 6.7 изображены места действия антибиотиков различных классов.

В результате избирательной токсичности многие антибиотики имеют высокий терапевтический индекс (т.е. соотношение между токсической и терапевтической дозами). Разумеется, как врожденный иммунный ответ, так и специфические иммунологические механизмы способствуют устранению бактериальной инфекции вместе с антибиотиками, назначаемыми для ускорения этого процесса и предотвращения развития генерализованной инфекции.

Бактериостатическое действие антибиотиков это

Подавление роста бактерий и их гибель зависят от концентрации антибиотика

Активность конкретного антибиотика против определенных бактерий можно легко определить в лаборатории. Подвергая стандартное число бактерий (инокулюм) воздействию антибиотика, взятого в различных концентрациях, определяют наименьшую из них, которая ингибирует рост бактерий.

Эту концентрацию называют минимальной ингибирующей концентрацией (МИК). Если увеличивать концентрацию сверх МИК, то обычно достигают такой концентрации, которая убивает бактерии (термин «убивает» означает, что число живых бактерий в инокулюме снижается в 1000 раз [log103,0], или на 99,9%).

Наименьшую концентрацию антибиотика, необходимую для того, чтобы убить бактерии, называют минимальной бактерицидной концентрацией (МБК). Как правило, МБК в 2-8 раз выше, чем МИК. Антибиотики, для которых в клинических условиях удается достичь концентрации в крови, превышающей МБК в отношении обычных патогенов, классифицируют как бактерицидные антибиотики.

Антибиотики, для которых легко достижимы концентрации выше МИК, но обычно не превышающие МБК, называют бактериостатическими антибиотиками. Однако нельзя отнести антибиотик к преимущественно бактериостатическим или бактерицидным, поскольку существует уникальное соотношение между каждой бактерией и каждым антибиотиком.

Например, пенициллин, который считают классическим бактерицидным антибиотиком, почти всегда бактерициден для стрептококков, однако оказывает лишь бактериостатическое действие на энтерококки. Похожим образом хлорамфеникол является бактериостатическим препаратом против большинства видов кишечных бактерий, но оказывает бактерицидный эффект на большинство штаммов Haemophilus influenzae.

Антибиотики могут действовать синергично, антагонистически или индифферентно

Иногда для лечения заболевания, вызванного определенным патогеном, используют комбинацию двух или более антибиотиков. С помощью лабораторных методов можно охарактеризовать отношение антибактериального действия двух (или более) антибиотиков на определенные бактерии как синергичное, антагонистическое или индифферентное, сопоставляя эффекты комбинации антибиотиков и каждого из них в отдельности на рост бактерий (рис. 6.8):

  • если комбинация препаратов заметно повышает антибактериальный эффект (выше, чем наиболее активный агент), комбинацию называют синергичной, т.е. общий эффект выше аддитивного;
  • если в результате применения комбинации подавление бактериального роста оказывается слабее, чем вызываемое наиболее активным агентом в отдельности, такая комбинация является антагонистической;
  • если комбинация не дает ни синергичного, ни антагонистического эффектов, она является индифферентной.

На практике большинство комбинаций относятся к индифферентным. Однако в клинике выявлены важные синергичные и анагонистические комбинации:

  • процент успешного лечения энтерококкового эндокардита с помощью комбинации пенициллин плюс аминогликозид существенно выше,чем при использовании одного пенициллина, что свидетельствует о наличии синергизма;
  • комбинация пенициллина и тетрациклина для лечения бактериального менингита ассоциируется со значительно более высокой смертностью, чем в случае применения одного пенициллина — пример антагонизма.

Бактериостатическое действие антибиотиков это

Рис. 6.8 Кривые бактериального роста, показывающие синергичное, антагонистическое и индифферентное действие антибиотиков А и Б на микроорганизмы трех разных типов, (а) Синергичная комбинация, т.к. ее антибактериальный эффект значительно выше, чем эффект одного, более активного антибиотика Б.

(б) Добавление антибиотика Б значительно снижает антибактериальный эффект антибиотика А, т.е. комбинация является антагонистической, (в) Антибактериальная активность комбинации по существу такая же, как более активного антибиотика Б, поэтому комбинация является индифферентной.

Киллерный эффект бактерицидных лекарств может зависеть от их концентрации или времени воздействия

Гибель бактерий под влиянием некоторых бактерицидных препаратов (например, аминогликозидов и фторхинолонов) зависит от их концентрации, тогда как аналогичный эффект других антибиотиков (например, β-лактамов и гликопептидов) зависит от времени воздействия.

Зависимый от концентрации киллинг предполагает повышение бактерицидной активности вместе с увеличением концентрации антибиотика. В случае киллинга, зависимого от времени, бактерицидная активность не усиливается или усиливается незначительно при повышении концентрации выше МБК;

Нормальная репликация бактерий часто замедлена даже после прекращения действия антибиотика

Когда бактерии подвергаются действию антибиотика в концентрациях ниже МИК, а затем антибиотик удаляют из среды, репликация бактерий не нормализуется (не становится такой, какой она была до применения антибиотика) в течение различного периода времени (обычно несколько часов после удаления антибиотика).

Бактериостатическое действие антибиотиков это

Этот феномен получил название «постантибиотический эффект» (ПАЭ). ПАЭ наблюдается не при всех комбинациях бактерия-лекарство, однако когда он возникает, то часто зависит от концентрации. Иными словами, чем выше была концентрация антибиотика, действующего на бактерии, тем длительнее ПАЭ.

Для аминогликозидов и фторхинолонов ПАЭ характерен при их действии на грамотрицательные бактерии, тогда как β-лактамам, за исключением карбапенемов, это явление несвойственно. Однако β-лактамы проявляют умеренно выраженный ПАЭ при их воздействии на грамположительные бактерии. На рис. 6.9 и 6.

Рис. 6.9 Зависимое от концентрации бактерицидное действие и постантибиотический эффект (ПАЭ). Изучение гибели бактерий в бульонной культуре, содержащей различные концентрации антимикробного вещества, показывает, что бактерицидное действие зависит от концентрации вещества.

ПАЭ в отношении оставшихся в живых бактерий обнаруживается после их отмывания и ресуспендирования в среде, не содержащей антибиотика. МБК — минимальная бактерицидная концентрация; МИК — минимальная ингибирующая концентрация.

Рис. 6.10 Зависимое от времени бактерицидное действие. Изучение гибели бактерий в бульонной культуре, содержащей различные концентрации р-лактама, выявило зависимое от времени бактерицидное действие на грамотрицательные бактерии.

Постантибиотический эффект в отношении оставшихся в живых бактерий после отмывания и ресуспендирования в среде, не содержащей антибиотика, не обнаруживается. МБК — минимальная бактерицидная концентрация.

Где требуются такие средства

2. Клиндамицин

4. Хлорамфеникол

Проф. Д. Нобель

Бактерицидное действие – это то свойство некоторых веществ, которое постоянно требуется человеку в хозяйственной и бытовой деятельности. Чаще всего такие препараты применяются для дезинфекции помещений в детских и медицинских учреждениях, местах общего пользования и заведениях общественного питания.

Используют их для обработки рук, посуды, инвентаря. Особенно нужны бактерициндные препараты в медицинских учреждениях, где они применяются постоянно. Многие хозяйки используют такие вещества и в быту для обработки рук, сантехники и пола.

Медицина – это тоже та область, где препараты бактерицидного действия используют очень часто. Наружные антисептики кроме обработки рук применяются для очищения ран и борьбы с инфекциями кожи и слизистых.

Химиотерапевтические препараты – это пока единственное средство лечения различных инфекционных заболеваний, вызываемых бактериями. Особенность таких препаратов в том, что они разрушают клеточные стенки бактерий, не затрагивая клетки человека.

Такие препараты, обладающие бактерицидным действием, используются для обработки рук, инвентаря, медицинских инструментов, пола и сантехники. Некоторые их них безопасны для кожи и даже используются для лечения инфицированных ран. Их можно разделить на несколько групп:

  • препараты хлора: хлорная известь, “Хлорамин”, “Жавель”, “Хлорсепт” и другие;
  • кислородосодержащие средства: перекись водорода, “Гидроперит”;
  • препараты йода: спиртовой раствор, “Люголь”, “Йодоформ”;
  • кислоты и щелочи: салициловая кислота, борная кислота, натрий двууглекислый, нашатырный спирт;
  • препараты, содержащие металлы – серебро, медь, алюминий, свинец и другие: квасцы, свинцовая вода, цинковая мазь, “Ксероформ”, “Ляпис”, “Проторгол”;
  • а также фенол, формалин, деготь, “Фурацилин” и другие.

Механизм действия антибиотиков Править

Импульсный режим применения антибиотиков заключается в назначении относительно высоких доз антибиотика с таким расчетом, чтобы пик концентрации вещества в крови был выше, чем МИК или МБК для данного возбудителя, а интервалы между введениями продолжительнее, чем несколько периодов полувыведения антибиотика из сыворотки.

Так, период полувыведения кристаллического пенициллина G составляет около 30 мин, однако обычно его вводят каждые 6 час (т.е. каждые 12 периодов полувыведения). Эта схема дозировки заметно отличается от используемой для большинства других лекарств, которые, как правило, вводят с интервалами, не превышающими один период полувыведения из сыворотки. Существует несколько причин, обусловливающих эффективность импульсного режима для антибиотиков:

  • терапевтический индекс большинства антибиотиков высокий, что часто позволяет создать значительную пиковую концентрацию вещества в сыворотке, не опасаясь возникновения существенных токсических эффектов;
  • у некоторых антибиотиков киллерный эффект зависит от концентрации, поэтому желательно для большего эффекта получить высокую пиковую концентрацию антибиотика в сыворотке;
  • часто возможно поддержать концентрацию антибиотика в сыворотке на более высоком уровне, чем МИК для бактерий, на протяжении всего интервала между введениями, даже если этот интервал относительно велик по отношению к периоду полувыведения из сыворотки (рис. 6.11);
  • даже в том случае, когда концентрация антибиотика в сыворотке падает ниже МИК и удерживается на этом уровне в течение какого-то времени между введениями, ПАЭ может предотвратить размножение бактерий в течение этого периода до введения следующей дозы антибиотика (рис. 6.12);
  • иммунная система организма-хозяина играет активную роль в борьбе с инфекциями, за исключением пациентов с тяжелыми нарушениями функций иммунной системы. Действительно, до открытия антибиотиков многие пациенты переносили бактериальные инфекции, но выздоровление протекало медленнее и чаще сопровождалось осложнениями.

Рис. 6.11 Импульсный режим применения антибиотиков. В этом примере антибиотик очень активен против бактерий, его концентрация в сыворотке остается выше минимальной ингибирующей концентрации (МИК) все время, несмотря на не слишком частое введение.

Рис. 6.12 Импульсный режим применения антибиотиков. В этом примере пик концентрации антибиотика в сыворотке после каждого введения явно выше минимальной ингибирующей концентрации (МИК), однако какое-то время в конце каждого интервала концентрация падает ниже уровня МИК.

Выбор антибиотика основан на механизме его действия, эффективности, токсичности и фармакокинетических свойствах. Последние приведены в таблицах, помещенных в тексте после описания отдельных классов антибиотиков.

Антибиотик может иметь широкий или узкий спектр действия против бактерий различных видов

Антибиотики, активные против бактерий многих видов, называют антибиотиками широкого спектра действия. Антибиотики, которые активны лишь против некоторых видов, относят к антибиотикам узкого спектра действия. Однако такое деление до некоторой степени условно.

Резистентность к антибиотикам бывает естественной (врожденной) или приобретенной

Естественная резистентность бактерий к антибиотику является их изначальным свойством и основа на на механизме действия или других характеристиках антибиотика. Например, у анаэробных бактерий отсутствует механизм кислородозависимого транспорта, необходимого для транспортировки аминогликозидов в бактериальную клетку, поэтому анаэробы обладают естественной резистентностью к аминогликозидам.

С другой стороны, приобретенная резистентность относится к приобретению гена, придающего это качество бактериям, не обладающим естественной резистентностью. Здесь антибиотик выполняет роль фактора, оказывающего избирательное эволюционное давление на бактерии, у которых развивается резистентность, чтобы обеспечить их выживаемость.

Однако вероятность развития специфической резистентности зависит как от антибиотика, так и от самих бактерий. В некоторых случаях для возникновения клинически значимой резистентности достаточно лишь одиночной мутации в бактериальном геноме. В других случаях для приобретения фенотипа резистентности необходимы множественные мутации.

Известны три основных биохимических механизма приобретенной резистентности:

  • снижение проницаемости бактерий по отношению к антибиотику вследствие изменений клеточной мембраны у грамотрицательных бактерий (см. далее),
  • продукция бактериальных ферментов, изменяющих молекулярную структуру антибиотика. Эти ферменты могут быть гидролитическими (например, β-лактамазы) или негидролитическими (например, ферменты, модифицирующие аминогликозиды);
  • изменение мишени для антибиотика в результате одиночной мутации гена, кодирующего участок, связывающий антибиотик, может быть достаточным для возникновения клинически значимой резистентности (например, у Staphylococcus aureus, резистентных к метициллину, MRSA).

Существуют значительные различия структуры клеточной стенки и клеточной мембраны у грамположительных и грамотрицательных бактерий

Грамположительные бактерии содержат наружную клеточную стенку, состоящую из многих слоев пептидогликана, под которой находится клеточная мембрана. Эти слои пептидогликана не являются существенным препятствием для проникновения антибиотиков (рис. 6.13).

Грамотрицательные бактерии обладают наружной клеточной мембраной, содержащей большое количество липополисахарида, а также истинной внутренней цитоплазматической мембраной. Последняя покрыта меньшим, чем у грамположительных бактерий, числом полигликановых слоев и отделена от наружной мембраны периплазматическим пространством.

Наружная мембрана состоит из фосфолипидного бислоя, пронизанного водными каналами, образованными белками наружной мембраны, которые называют поринами. Таким образом, грамотрицательные бактерии обладают серьезным барьером на пути проникновения лекарств.

Липофильные препараты или водорастворимые вещества с низкой молекулярной массой могут проходить через пориновые каналы. Изменения содержания или состава пориновых белков или липополисахаридов наружной мембраны могут обусловить возникновение резистентности вследствие снижения проницаемости к антибиотикам.

Мутации, в результате которых уменьшается проницаемость мембраны бактериальной клетки по отношению к одному антибиотику, часто сопровождаются снижением проницаемости к другим антибиотикам, вследствие этого развивается полимедикаментозная резистентность.

Бактерии Править

Антибактериальная терапия эффективна только при бактериальных инфекциях, поэтому важно ограничить применение антибиотиков только ситуациями, когда известно, что заболевание представляет собой бактериальную инфекцию или же она весьма вероятна.

Распространенная практика назначать антибиотики в случае инфекций, которые, возможно, вызваны вирусами, не только неэффективна, но к тому же обходится дорого и повышает вероятность появления резистентности к антибиотикам.

Для рационального выбора антибиотика важно идентифицировать возбудителя заболевания. Если его идентичность неизвестна, что часто бывает в начале лечения, то нередко удается сделать достаточно обоснованное предположение о возможной природе патогена(-ов). Например:

  • инфекцию мочевого тракта у сексуально активной женщины в период до менопаузы примерно в 85% случаев вызывает Escherichia coli

Резистентность к антибиотикам

  • Неадекватное применение антибиотиков является главным фактором, обусловливающим развитие резистентности бактерий к антибиотикам
  • Три основных механизма резистентности к антибиотикам: (1) снижение проницаемости бактерий; (2) изменения структуры антибиотиков под влиянием ферментов; (3) изменения молекулярной структуры мишени
  • причинои возникновения целлюлита верхних или нижних конечностей обычно служат Streptococcus pyogenes или Staphylococcus aureus.

Рис. 6.13 Структура клеточной стенки и мембраны бактерий. (а) Грамположительная бактерия, (б) Грамотрицательная бактерия. Обратите внимание на то, что только грамотрицательные бактерии обладают наружной мембраной, создающей дополнительное препятствие для проникновения антибактериальных веществ.

Рис. 6.14 Треугольник, обозначающий классическое двунаправленное тройственное взаимодействие между микробным патогеном, антимикробным препаратом и организмом-хозяином, иммунная функция которого является главным фактором, определяющим исход инфекции.

Таблица 6.10 Факторы, относящиеся к бактериям, организму-хозяину и лекарству, которые необходимо учитывать при выборе антибиотика

Идентичность патогена(-ов)* Чувствительность патогена(-ов)*

Локализация инфекции Аллергия Функции почек Функции печени Нейтропения

Функции пищеварительного тракта Другие имеющиеся заболевания Одновременно применяемые лекарства Беременность

Желательные пути введения

Активность против патогена(-ов)*

Способность достичь очага инфекции Возможность лекарственного взаимодействия Возможные пути введения Частота введения (для амбулаторных пациентов) Вкус (для препаратов в жидком виде) Стабильность при различных температурах (для препаратов в жидком виде)

Чтобы сделать более весомое предположение о вероятном патогене, важно знать:

  • возникла ли инфекция в условиях повседневной жизни или это внутрибольничное заражение;
  • детальные сведения о пациенте, включая возраст, имеющиеся заболевания и/или другие предрасполагающие факторы.

В некоторых случаях целесообразно начать антибиотикотерапию до проведения лабораторных исследований по идентификации патогена (например, в большинстве случаев целлюлита). Если предсказать природу патогена с определенной степенью достоверности невозможно или заболевание носит тяжелый характер, необходимо взять у пациента материал для определения возбудителя до начала применения антибиотиков.

В микробиологической лаборатории идентифицируют патогены и проверяют in vitro их чувствительность к антибиотикам для последующего рационального выбора нужного медикамента. Обычно для этого требуется 48-72 час.

Правила применения таких препаратов

Все бактерицидные средства являются сильнодействующими и могут вызывать серьезные побочные эффекты. При использовании наружных антисептиков обязательно соблюдать инструкцию и не допускать передозировки.

Химиотерапевтические препараты для приема внутрь также могут быть опасными. Ведь вместе с патогенными бактериями они уничтожают и полезные микроорганизмы. Из-за этого у пациента нарушается работа желудочно-кишечного тракта, наблюдается недостаток витаминов и минералов, снижается иммунитет и появляются аллергические реакции. Поэтому при применении бактерицидных препаратов нужно соблюдать некоторые правила:

  • принимать их необходимо только по назначению врача;
  • очень важна дозировка и режим приема: действуют они только при наличии в организме определенной концентрации действующего вещества;
  • нельзя прерывать лечение раньше срока, даже если состояние улучшилось, иначе бактери могут вывыработать устойчивость;
  • запивать антибиотики рекомендуется только водой, так они лучше действуют.

Бактерицидные препараты оказывают влияние только на бактерии, уничтожая их. Они неэффективны против вирусов и грибков, но губят полезные микроорганизмы. Потому самолечение такими препаратами недопустимо.

Проблема лечения гнойно-воспалительных заболеваний, являющаяся одной из самых древних в хирургии, продолжает оставаться актуальной, что определяется распространенностью такого вида патологии, длительными сроками лечения больных и высокой летальностью.

Основные принципы любого метода лечения гнойно-некротических процессов — раннее удаление девитализированных тканей, подавление деятельности микрофлоры в очаге поражения, ускорение репаративной регенерации. Н.Н.

Бурденко (1946) писал: «Стремление удалить инфекцию было всегда задачей врачей — сначала на основании эмпирического мышления, а затем научного. Бактериологические средства в тот и другой период играли большую роль».

Бактериостатические антибиотики приостанавливают размножение бактерий, бактерицидные — убивают микробную клетку. К бактериостатическим антибиотикам относят тетрациклины, левомицетин, некоторые макролиды и линкозамины, к бактерицидным — пенициллины, цефалоспорины, аминогликозиды, фторхинолоны, современные макролиды, рифампицин, ванкомицин.

При назначении комбинированной антибиотикотерапии сочетание средств с бактерицидной и бактериостатической активностью считается нецелесообразным. Нежелательно применение бактериостатиков, приостанавливающих размножение бактерий, у больных со сниженным иммунитетом (при тяжелых инфекциях, иммунодепрессивной терапии, сепсисе), от состояния которого зависит окончательное разрушение микробной клетки.

Бета-лактамные антибиотики (содержащие бета-лактамное кольцо) оказывают бактерицидное действие, нарушая синтез клеточной стенки бактерий.

Природные пенициллины являются препаратами выбора при пиогенной стрептококковой и клостридиальной инфекции (а также при лечении актиномикоза и сифилиса) и сохраняют активность против анаэробных и грамотрицательных аэробных кокков, фузобактерий и бактероидов (за исключением В. fragilis).

В средних и высоких дозах в комбинации с аминогликозидами они эффективны при энтерококковой инфекции. Природные пенициллины утратили активность против стафилококков, в большинстве случаев (60-90 %) продуцирующих ферменты (бета-лактамазы), разрушающие антибиотики пенициллинового ряда.

Пенициллины выводятся в основном с мочой через почечные канальцы (80-90 %) и путем клубочковой фильтрации (10-20 %) как в биологически активной форме (50—70 %), так и в виде метаболитов. В зависимости от тяжести инфекции средние суточные дозы бензилпенициллина могут колебаться от 8—12 млн до 18—24 млн ЕД, достигая 30—60 млн ЕД при лечении газовой гангрены.

Феноксиметилпенициллин, предназначенный для приема внутрь, применяют при легкой инфекции (как правило, в амбулаторной практике) и поддерживающей терапии после курса лечения бензилпенициллином. Пенициллины, устойчивые к пенициллиназам (полусинтетические пенициллины), по праву считаются наиболее результативными антибиотиками при лечении стафилококковой инфекции у больных, не имеющих аллергии к пенициллинам.

Они достаточно эффективны против стрептококков и несколько уступают бензилпенициллину в активности против анаэробов; экскретируются с мочой и желчью. Метициллин имеет ограниченное применение, так как может вызывать интерстицильный нефрит.

Аминопенициллины (ампициллин, амоксициллин) относятся к полусинтетическим пенициллинам второй генерации. Спектр их действия охватывает многие (но не все) штаммы Е. Coli, Proteus mirabilis, Salmonella, Shigella, H.

Influenzae, Moraxella spp. Препараты активны против пенициллиназопродуцирующих стафилококков, но в комбинации с ингибиторами бета-лактамаз (клавулановая кислота, сульбактам) комплексные препараты лишены этого недостатка; накапливаются в моче и желчи и не дают нефротоксического эффекта.

Карбоксипенициллины (карбенициллин, тикарциллин) и уреидопенициллины (азлоциллин, мезлоциллин, пипераииллин) относятся к третьей и четвертой генерациям полусинтетических пенициллинов, активны против грамположительных и грамотрицательных бактерий, а также против синегнойной палочки и бактероидов.

Комбинированные полусинтетические пенициллины: ампициллин/сульбактам, амоксициллин/клавулановая кислота, тикарциллин/клавулановая кислота (тиментин) устойчивы к бета-лактамазам и активны против продуцирующих бета-лактамазы штаммов стафилококка, энтеробактерий и других грамотрицательных возбудителей.

Монобактамы занимают особое место среди бета-лактамных антибиотиков, так как их активность распространяется только на грамотрицательные бактерии кроме Acinetobacter, Pseudomonas cepacia, Pseudomonas maltopillia, включая продуцирующие бета-лактамазу штаммы.

Азтреонам неэффективен при анаэробной инфекции и почти не действует на грамположительные аэробы. Его можно использовать при инфекциях мягких тканей, костей и суставов, перитоните, сепсисе. Ввиду малой токсичности этот антибиотик часто применяют вместо аминогликозидов у больных с нарушением функции почек и у пожилых пациентов.

Понравилась статья? Поделиться с друзьями:
Beauty-Krasota.ru
Adblock detector